4. Компьютерная машина времени.
5. Экспериментальное знание против математического.
Со времен Френсиса Бэкона, а, может быть, и раньше ученые осознали, что новое знание получается методом «чтения книги жизни». Однако вопрос о том, как же конкретно ее читать, остается.
Приборы для чтения книги жизни многообразны и подвержены классификации подобно наукам. Физические приборы, включая миллиардной стоимости синхрофазатроны, - это один тип приборов. Им подобны астрономические, химические, биологические приборы (телескопы, микроскопы, котлы, камеры и пр.).
Другой тип приборов используется, в основном, общественными науками. Это различные способы измерения происходящего в обществе: опросы, статистические конторы, СМИ, институты голосования, ИНТЕРНЕТ-обработка и др.
При использовании приборов чтения книги жизни возник феномен вмешательства в явление в процессе его измерения. Это принцип неопределенности Гейзенберга в физике, влияние на мнение населения при проведении и публикации опросов и др.
Компьютерная модель объекта, явления, процесса может быть разной степени сложности и разной степени адекватности. Возможна ли точная копия объекта или нет? Что говорит мысленный эксперимент? Какие парадоксы здесь возникают? Другое понятие машины времени. Возможные миры и реализуемые миры. Я пытаюсь обсудить эти вопросы в теоретическом плане.
Чем отличается виртуальная, в том числе компьютерная реальность, от «настоящей» реальности. И есть ли «настоящая» реальность?
Понятно, что, как всегда, вопросов больше чем ответов.
Первичная реальность. Это нечто, что познается человеком непосредственно, с помощью его органов чувств. То – есть человек с ней, с этой реальностью, соприкасается непосредственно. Для человека 20 века автомобили, самолеты, радио, телефон, телевидение являются первичной реальностью, подобно тому, что для человека 19 века таковой реальностью являются лошади, телеги, мушкеты и т. д.
Вторичная реальность появляется из рассказов о первичной реальности другими людьми. То - есть первичной реальностью является сам рассказ, а внутри рассказа есть другая реальность, которую человек не может воспринимать как первичную. Епископ Джозеф Беркли, основатель солипсизма, признавал только первичную реальность. Полученная информация с помощью, например, телевизора, есть информация вторичная.
Вопрос: как понимать реальность, полученную человеком не через органы чувств, данные Богом, а через вспомогательные приборы, стоящие между органами чувств и предметами реальности? Например, слепой пользуется аппаратом, заменяющим ему зрение. Астроном пользуется телескопом, биолог – микроскопом. Снимки обратной стороны Луны или Марса получаются с использованием целой совокупности приборов.
Вроде бы современный человек смирился с тем, что получаемая с помощью приборов информация также первична. Ибо информация, полученная ощупыванием рукой или палкой (то – есть прибором), так сказать, одного порядка.
Получив информацию о реальности, человек формирует представление о мире с помощью мыслительных процедур. В частности, с помощью мыслительных процедур устанавливаются причинно – следственные связи. Все мы знаем, что мыслительные процедуры также можно усиливать с помощью приборов. Усиление мыслительного процесса с помощью приборов также имело и имеет своих скептиков, как и получение первичной информации, о которой речь шла выше. Любой калькулятор является таким прибором.
Появившиеся во второй половине 20 века компьютеры почти сразу стали рассматриваться как усилители мыслительных процедур. Проведение с помощью компьютеров математических выкладок, логических заключений привело к тому, что сложные и утомительные математические доказательства стало возможным поручать компьютеру. Опять появились неверующие: считать или не считать теорему доказанной, если часть работы проделал компьютер.
Главная цель мыслительных процедур: из фактов главным образом первичной, но не только, реальности создавать картины мира и его частей, создавать теории. Эти картины, эти теории помогают ориентироваться в жизни. Именно они создают у человека ощущение, что он понимает, что происходит. Субъективное ощущение понимания возникает именно тогда, когда в голове построена теория, построена модель. И когда появляющиеся новые факты укладываются в эту теорию, в эту модель.
Ясно, что мыслительный процесс неоднозначен. На одних и тех же фактах можно строить, и реально построены разные теории. Отсюда бытовые и научные споры.
Создание моделей реальных объектов является едва ли не главным в процессе познания. И модели создавались всегда, коль они неотделимы от процесса познания. Модели разные по своему инструментальному содержанию. Лев Толстой создал художественную модель войны 1812 года. Брюллов – модель гибели Помпеи. Историк, излагая исторические факты, вольно или невольно придерживается какой то модели, иначе изложение не будет понятным. Модель царствования Петра Первого у славянофила и у западника будут принципиально различаться, хотя и используют одни и те же факты.
Модели создаются не только для познания, но и для облегчения творчества. Особенно любят модели архитекторы. Прежде чем возводить дворец, они делают его модель. Распространены модели кораблей, самолетов, городов.
Компьютеры совершили переворот в процессе создания и использования моделей. Модели получили новое качество, и мы пока не осмыслили всех последствий этого нового качества для процесса познания.
Возможно, что здесь появляются новые логические и даже физические парадоксы.
4. Компьютерная машина времени.
Чтобы представить себе, о чем идет речь, рассмотрим мысленный эксперимент. Построим компьютерную модель какого-нибудь реального объекта, например, модель Советского общества 80 – х годов 20 века. Как всякая модель, она является лишь некоторым приближением действительности. Однако модельеры знают, что любую модель можно «совершенствовать», делать ее все более точной. Например, если в исходной версии набор действий, осуществляемых (компьютерным) человеком состоял из 10 позиций, что в следующей версии он может состоять из 100 позиций и т. д. То – есть отражение действительности в модели становится все более точным.
Теперь спросим себя, где находится предел для описанной последовательности моделей, в которой каждая последующая модель более точно отражает действительность. Пределом является точная копия действительности. Если бы предел был достижим, что мы бы имели не что иное, как машину времени в предположении, что компьютерное время быстрее реального. Причем компьютерная модель устроена так, что двигаться во времени можно в двух направлениях, и вперед, и назад.
Специалист по математической логике сразу скажет, что предел недостижим хотя бы потому, что возникает логический парадокс. А именно, собственная часть оказывается равной целому. Компьютерная модель действительности в точности равна самой действительности, собственной частью которой является эта модель.
5. Экспериментальное знание против математического.
Традиционно считается, что математическое знание имеет, так сказать, высший рейтинг. Это знание высокого качества. Оно нетленно, оно навсегда, оно не подлежит пересмотру.
Ясно, однако, что математический способ получения нового знания весьма ограничен. Он, как известно, состоит в следующем. Формулируется математическая модель объекта, процесса, явления в виде набора исходных предположений (аксиом). А далее доказываются утверждения относительно свойств данной модели. Например, для знаменитой модели рыночной экономики Эрроу – Дербе доказывается существование и оптимальность рыночного равновесия.
Стремление сделать математическую модель более совершенной, более приближенной к реальности приводит к ее переусложнению. Когда математическая модель перегружена деталями, затруднительно или невозможно получить результат математическим путем. Другими словами, математическое моделирование имеет весьма низкий порог сложности, даже в предположении, что часть выкладок будет производиться компьютером.
Компьютерная модель лишена этого недостатка. Можно строить сколь угодно сложные модели, которые будут все более точно отражать действительность. Но что дальше делать с построенной моделью? Последнее время развивается методология получения нового знания с помощью вычислительных экспериментов на компьютерных моделях. И естественно возникает вопрос, насколько знание, полученное из вычислительного эксперимента, может считаться знанием относительно реальности (а не относительно искусственного объекта – компьютерной модели).
Другой аспект этого вопроса связан с различием в получении знания дедуктивным и индуктивным путем. В математике сначала формулируются аксиомы и правила вывода, а потом вступает в действие дедукция. Результат дедуктивного вывода и есть новое знание. Оно носит, как видим, условный характер. Если аксиомы и правила вывода адекватно отражают какой – то мир, то и полученные выводы адекватно описывают этот мир. Индуктивный метод состоит в накоплении неких фактов и дальнейшей их обработке. Результатом последней и является новое знание.
Итак, наука идет в направлении создания искусственной, виртуальной, компьютерной действительности. Называйте, как хотите. Но эта рукотворная реальность есть некая другая картина мира. Не та, которая сидит в наших головах или описана в книгах, а именно другая, чего раньше не было в арсенале человечества. Это принципиально иной прибор для познания действительности, для добывания нового знания.
Правда, нельзя сказать, что это совершенно новый, неожиданный скачок в инструментах познания реальности. Промежуточным шагом можно считать всем хорошо известные игры. Игры, которые были всегда, игры, в которые играют и животные. Игры имитируют жизненные ситуации. Слово «имитируют» означает, что в игре речь идет о модели реальности. Например, в футболе обучаются ловкости, в бизнес – играх обучаются бухгалтерскому, брокерскому делу управлением компанией и т. д. Распространение компьютерных игр среди детей свидетельствует о том, что виртуальная реальность специально делается симпатичнее настоящей реальности.
Всё большее распространение получают, так называемые, ситуационные комнаты. Там играют важные дяди, облеченные большой ответственностью. Первая ситуационная комната, как известно, была сделана по приказу Макнамары, министра обороны США в то время. В ней разыгрывались варианты военных действий во Вьетнаме в зависимости от тех или иных решений командиров. «Что будет, если…» (What – If) анализ, инструментарий которого взят на вооружение всеми развитыми странами, представляет собой не что иное, как создание и использование искусственных миров. Понятно, что чем ближе искусственный мир к реальному, тем лучше. Тем достовернее предсказания, тем реалистичнее прогнозы.
Уже наклёвывается естественное разделение труда. Одни создают модели искусственных миров, а другие проводят с ними эксперименты.
Не за горами то время, когда инструмент искусственного мира заработает на полную мощь и станет доминирующим способом получения новых знаний в общественных науках. Каковы последствия существования электронного зеркала действительности, вопрос, на который пока нет определенного ответа.